2=-16t^2+32t+5

Simple and best practice solution for 2=-16t^2+32t+5 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2=-16t^2+32t+5 equation:



2=-16t^2+32t+5
We move all terms to the left:
2-(-16t^2+32t+5)=0
We get rid of parentheses
16t^2-32t-5+2=0
We add all the numbers together, and all the variables
16t^2-32t-3=0
a = 16; b = -32; c = -3;
Δ = b2-4ac
Δ = -322-4·16·(-3)
Δ = 1216
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1216}=\sqrt{64*19}=\sqrt{64}*\sqrt{19}=8\sqrt{19}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-32)-8\sqrt{19}}{2*16}=\frac{32-8\sqrt{19}}{32} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-32)+8\sqrt{19}}{2*16}=\frac{32+8\sqrt{19}}{32} $

See similar equations:

| 5x+4(3x)=32 | | 5/8-n=3-3/4 | | -2(2+v)=-12 | | 7+p=23.p | | h+765=-35 | | 1x+2=3+1 | | x+x+148=180 | | -4(1+x)-3x=-7+10 | | 5x+4=7x-36 | | 3x+4+4(2x-8)=4(2x+3)+2 | | 6x+2x+4x+80=180 | | x-15/23=8/23 | | 9+a=17;7,8,9 | | -5r+23=2 | | -10+a2=-8 | | t/3t–6=48 | | f-451=720 | | 6(2a−1)−(11a+6)=7 | | x-15/23=48/23 | | (x+10)(x-20)=0 | | (x/5)+2=12-7 | | 9n-6n=5n+18 | | 5x+36+90=180 | | (3x+5x)x=7 | | 12(8)x=480 | | 1x+2(x+10)=9(x+3)+5 | | 5x–7=13x+1* | | 1x+2(x+10=9(x+3)+5 | | 1/2×+1/4=x | | (7x+51)^2=3x-11 | | 8m-(-17)=97 | | 7=g+g |

Equations solver categories